Optimisation of image acquisition and reconstruction of 111In-pentetrotide SPECT
نویسندگان
چکیده
The aim of this study is to optimise the acquisition and reconstruction for SPECT with 111 In-pentetrotide with the iterative reconstruction software OSEMS. For 111 In-pentetrotide SPECT, the uptake in the tumour is usually high compared to uptake in normal tissue. It may, however, be difficult to detect small tumours with the SPECT method because of high noise levels and the low spatial resolution. The liver is a common region for somatostatin-positive metastases, and to visually detect small tumours in the liver, as early as possible, is important for an effective treatment of the cancer disease. The study concentrates on the acquired number of projections, the subset size in the OSEM reconstruction and evaluates contrast as a function of noise for a range of OSEM iterations. The raw-data projections are produced using Monte Carlo simulations of an anthropomorphic phantom, including tumours in the liver. Two General Electric (GE) collimators are evaluated, the extended low-energy general-purpose (ELEGP) and the medium energy general-purpose (MEGP) collimator. Three main areas of reconstruction are investigated. First the reconstructions are performed for so called full time scans with the acquisition time used clinically. Also the effect of performing the examination in half-time or with half the injected activity is evaluated with the most optimal settings gained from the full time scans for both collimators. In addition images reconstructed without model-based compensation are also included for comparison. This study is a continuation of a previous study on 111 In-pentetrotide SPECT where collimator choice and model-based compensation were evaluated for a cylindrical phantom representing small tumours in liver background. As in the previous study, ELEGP proved to be the better collimator. For ELEGP, the most optimal setting was 30 projection angles and a subset size of 6 projections in the OSEM reconstruction, and for MEGP optimal setting was 60 projections and 4 subsets. The difference between the different collimator settings were, however, rather small but proven significant. For both collimators the half-time scan including model-based compensation was better compared to the full-time reconstructions without model-based compensation.
منابع مشابه
The Diagnostic Efficiency of 99mTc-EDDA/HYNIC-Octreotate SPECT-CT in Comparison with 111In-Pentetrotide in the Detection of Neuroendocrine Tumours
OBJECTIVE The aim of this study was to assess the diagnostic efficiency of (99m)Tc-EDDA/HYNIC-Octreotate in comparison with (111)Inpentetrotide scintigraphy in the detection of neuroendocrine tumors. This study also evaluates the impact of SPECT-CT hybrid imaging on somatostatin receptor scintigraphy (SRS) interpretation and clinical management of these tumors. METHODS Fourteen patients were ...
متن کاملA New Approach for Quantitative Evaluation of Reconstruction Algorithms in SPECT
ABTRACT Background: In nuclear medicine, phantoms are mainly used to evaluate the overall performance of the imaging systems and practically there is no phantom exclusively designed for the evaluation of the software performance. In this study the Hoffman brain phantom was used for quantitative evaluation of reconstruction techniques. The phantom is modified to acquire t...
متن کاملDevelopment and Evaluation of Image Reconstruction Algorithms for a Novel Desktop SPECT System
Objective (s): Various iterative reconstruction algorithms in nuclear medicine have been introduced in the last three decades. For each new imaging system, it is wise to select appropriate image reconstruction algorithms and evaluate their performance. In this study, three approaches of image reconstruction were developed for a novel desktop open-gantry SPECT system, PERSPECT, to assess their p...
متن کاملCollimator-detector response compensation in molecular SPECT reconstruction using STIR framework
Introduction:It is well-recognized that collimator-detector response (CDR) is the main image blurring factor in SPECT. In this research, we compensated the images for CDR in molecular SPECT by using STIR reconstruction framework. Methods: To assess resolution recovery capability of the STIR, a phantom containing five point sources along with a micro Derenzo p...
متن کاملDevelopment of 111In-labeled porphyrins for SPECT imaging
Objectives: The aim of this research was the development of 111In-labeled porphyrins as possible radiopharmaceuticals for the imaging of tumors. Methods: Ligands, 5, 10, 15, 20-tetrakis (3, 5-dihydroxyphenyl) porphyrin) (TDHPP), 5, 10, 15, 20-tetrakis (4-hydroxyphenyl) porphyrin (THPP) and 5, 10, 15, 20-tetrakis (3,4-dimethoxyphenyl) porphyrin) (TDMPP) were labeled with 111InCl3 (produced from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012